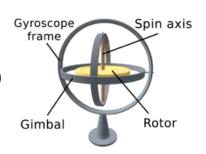

Machine Learning for the Quantified Self

Dataset (1)

- During the course we will use a running example provided by CrowdSignals.io
- People share their mobile sensors data (smart phone and smart watch) and get paid for annotating their data with activities

Dataset (2)

Sensor	Purpose	Device(s)	Values	Time point / Interval	Used
		Sen	asors		
Accelerometer	The acceleration of the device	phone/ watch	x, y, and z acceleration	time point	yes
Gyroscope	The angular speed of the device	phone/ watch	x, y, and z angular speed	time point	yes
Magnetometer	The magnetometer value of the device	phone/ watch	x, y, and z magnetometer value	time point	yes
Heart rate	The heart rate of the user	watch	heart rate (beats per minute)	time point	yes
Temperature	Ambient temperature	phone/ watch	temperature (in ^O C)	time point	no
Light	The light intensity	phone/ watch	light intensity (in lux)	time point	yes
Pressure	The current pressure	phone/ watch	pressure (in mercury millibars)	time point	yes
Humidity	The current humidity	phone/ watch	relative humidity (%)	time point	no
Proximity	Distance of user from phone	phone	distance (meters)	time point	no
Audio record	Record of audio obtained via the microphone	phone	audio recording	time point	no
	•	User	labels	·	•
Activity label	Record of the activity a user is conducting	phone	label (walking, running,)	interval	yes


Mobile phone measurements (examples)

Accelerometer

 Measures the changes is forces upon the phone in the x-y-z plane

Gyroscope

 Orientation of the phone compared to the earth's surface

- Magnetometer
 - Measures x-y-z orientation compared to the earth's magnetic field

The raw data

- What does the raw CrowdSignals data look like?
 - Separate tables per measurement
 - Specific time point measurements:

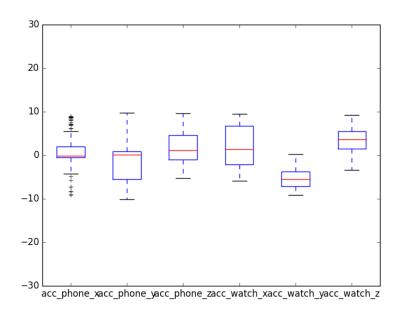
sensor_type	device_type	timestamps	rate
heartrate	smartwatch	1454956086325639687	175.000
heartrate	smartwatch	1454956086684549167	176.000
heartrate	smartwatch	1454956087523516770	175.000

- Interval measurements

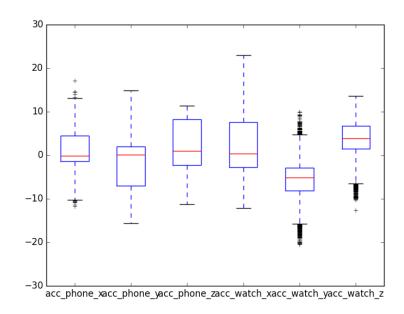
sensor_type interval_label interval_label interval_label	device_type smartphone smartphone smartphone		label_start 1454956132985999872 1454956393088000000 1454956608515000064	label_end 1454956366574000128 1454956578385999872 1454956813323000064
interval_label	smartphone	Sitting	1454956894057999872	1454957092968000000

Transforming the raw data (1)

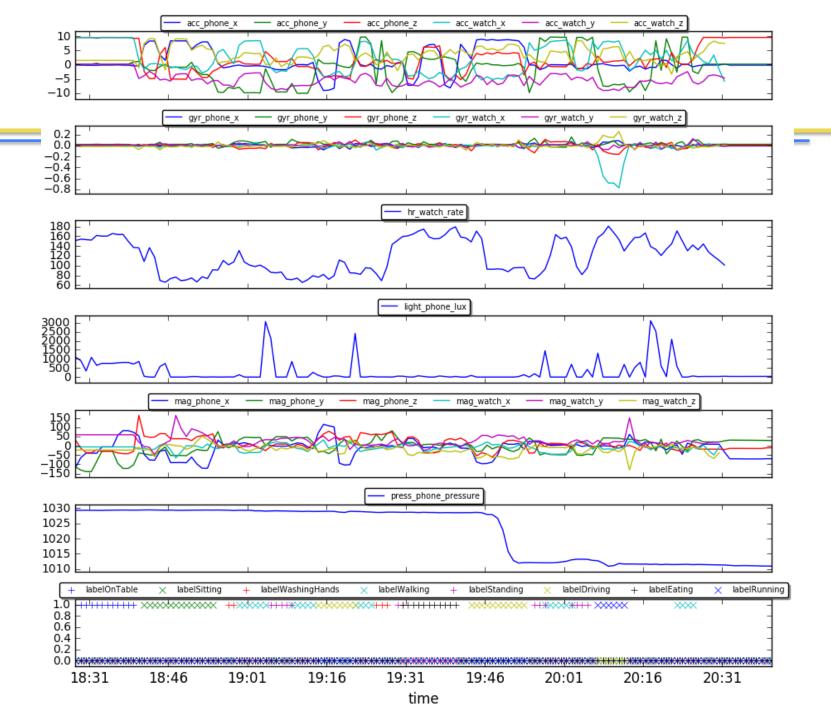
- Need to combine these table, but how?
- Select a step size Δt you want to consider in the data
 - this will represent one discrete time step
 - start at the earliest time point in the data
 - find all measurements for each single attribute associated with each interval $[t, t + \Delta t]$
 - we consider categorical features (e.g. label) as a number of binary features
 - combine their values (e.g. average for heart rate or accelerometer or sum for the label)

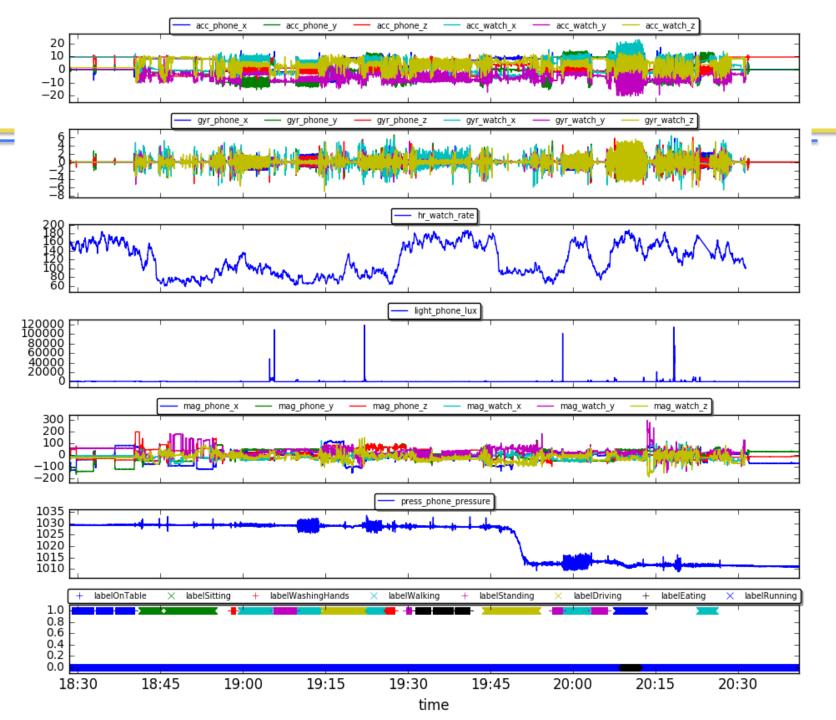

Transforming the raw data (2)

time	heart_rate	label On Table	label Sitting
2016-02-08 19:28:06	175.333	1	1
2016-02-09 19:28:06	-	0	0


Exploring the data (1)

- Let us consider a dataset from CrowdSignals which covers around 2 hours of data
- Imagine we take a step size of Δt = 1 minute and Δt = 250 milliseconds
- What difference would you expect in the spread of the data?
- What are the pros and cons of a higher value for Δt (less fine grained)?


Exploring the data (2)



(a)
$$\Delta t = 60$$
 seconds

(b)
$$\Delta t = 0.25$$
 seconds

Exploring the data (5)

		Λ	lumerical		
attribute	missing (%)	mean	standard	minimum	maximum
			deviation		
acc_phone_x	0.00% / 0.00%	1.09 / 1.10	4.19 / 4.67	-9.12 / -11.76	9.00 / 17.10
acc_phone_y	0.00% / 0.00%	-0.94 / -0.94	5.60 / 6.35	-10.08 / -15.60	9.78 / 14.87
acc_phone_z	0.00% / 0.00%	2.02 / 2.00	4.72 / 5.39	-5.29 / -11.30	9.63 / 11.38
acc_watch_x	7.52% / 8.78%	2.04 / 2.08	4.88 / 5.78	-5.82 / -12.18	9.55 / 22.94
acc_watch_y	7.52% / 8.78%	-5.15 / -5.18	2.43 / 3.52	-9.13 / -20.56	0.20 / 9.97
acc_watch_z	7.52% / 8.78%	3.64 / 3.60	2.72 / 4.01	-3.36 / -12.62	9.22 / 13.65
gyr_phone_x	0.00% / 0.00%	-0.00 / -0.00	0.03 / 0.57	-0.08 / -3.98	0.09 / 5.69
gyr_phone_y	0.00% / 0.00%	0.02 / 0.02	0.03 / 0.43	-0.06 / -4.95	0.16 / 6.50
gyr_phone_z	0.00% / 0.00%	-0.00 / -0.00	0.04 / 0.52	-0.16 / -5.39	0.11 / 5.92
gyr_watch_x	8.27% / 8.90%	-0.03 / -0.03	0.13 / 0.69	-0.77 / -6.66	0.06 / 6.32
gyr_watch_y	8.27% / 8.90%	0.00 / 0.00	0.03 / 0.55	-0.08 / -5.46	0.12 / 4.95
gyr_watch_z	8.27% / 8.90%	-0.00 / -0.00	0.04 / 0.80	-0.09 / -7.02	0.25 / 5.51
hr_watch_rate	7.52% / 76.41%	119.17 / 120.99	35.45 / 35.23	65.39 / 58.00	180.66 / 188.00
light_phone_lux	0.00% / 10.43%	278.35 / 281.51	596.30 / 2220.90	0.00 / 0.00	3109.34 / 118985.00
mag_phone_x	0.00% / 0.01%	-13.68 / -13.52	46.87 / 50.62	-121.76 / -156.36	115.52 / 126.55
mag_phone_y	0.00% / 0.01%	-3.72 / -3.80	44.87 / 47.92	-139.73 / -165.40	80.70 / 96.83
mag_phone_z	0.00% / 0.01%	7.53 / 7.57	35.19 / 40.01	-61.17 / -106.37	164.14 / 198.00
mag_watch_x	8.27% / 8.90%	-9.23 / -9.12	17.68 / 26.07	-66.03 / -137.96	31.67 / 122.83
mag_watch_y	8.27% / 8.90%	27.20 / 27.28	29.71 / 39.60	-47.61 / -151.27	163.57 / 297.44
mag_watch_z	8.27% / 8.90%	-19.97 / -20.01	24.17 / 31.62	-130.29 / -186.73	51.42 / 149.71
press_phone	0.00% / 10.34%	1022.34 / 1022.37	8.33 / 8.30	1010.96 / 1008.61	1029.38 / 1033.51
_pressure					
		Co	ategorical	•	•
attribute	value		percentage of cases		
label	OnTable		9.02% / 7.84%		
label	Sitting		10.53% / 8.60%		
label	WashingHands		3.75% / 1.98%		
label	Walking		18.80% / 14.74%		
label	Standing		10.53% / 7.27%		
label	Driving		14.29% / 12.41%		
label	Eating		8.27% / 6.80%		
label	Running		4.51% / 3.79%		

Machine Learning Tasks

- What kind of tasks could we identify in this dataset?
 - 1. a *classification* problem, namely predicting the label (i.e. activity) based on the sensors
 - 2. a *regression* problem, namely predicting the heart rate based on the other sensory values and the activity