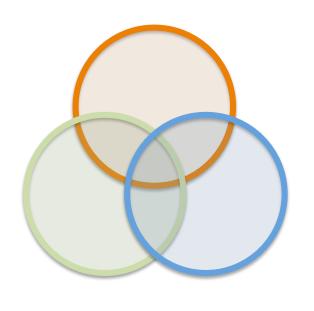
Machine Learning for the Quantified Self



Chapter 3
Handling Noise and Missing
Values in Sensory Data

Overview

- Previously: we collected the data
- Today: Removing noise from the data
 - Removal of outliers
 - Imputation of missing values
 - Transform the data to select the most useful information

Removal of outliers (1)

- What is an outlier?
- An outlier is an observation point that is distant from other observations
- Causes?
 - Measurement error (Arnold with a heart rate of 400)
 - Variability (Arnold trying to push his limits with a heart rate of 190)

Removal of outliers (2)

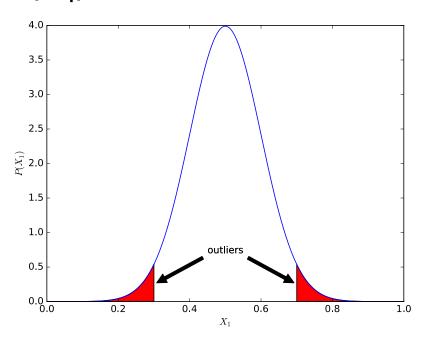
- Difference between measurement and variability outlier?
 - Former generated by another mechanism
- How to remove?
 - Domain knowledge (heart rate cannot be over 220)
 - Without domain knowledge (our focus)
- Have to be cautious as you do now want to remove valuable information

Removal of outliers (3)

- Two types of outlier detection:
 - Distribution based (we assume a certain distribution of the data)
 - Distance based (we only look at the distance between data points)

Distribution-based outlier detection (1)

- Let us start with Chauvenet's criterion
- Assume a normal distribution, single attribute (X_i)



Chauvenet's criterion (1)

 Take the mean and standard deviation for an attribute j in our dataset:

$$\mu = \frac{\sum_{n=1}^{N} x_n^j}{N}$$

$$\sigma = \sqrt{\frac{\sum_{n=1}^{N} (x_n^j - \mu)^2}{N}}$$

Chauvenet's criterion (2)

- Take those values as parameters for our normal distribution
- For each instance i for attribute j compute the probability of the observation:

$$P(X \le x_i^j) = \int_{-\infty}^{x_i^j} \frac{1}{\sqrt{2\sigma^2\pi}} e^{-\frac{(u-\mu)^2}{2\sigma^2}} \delta u$$

Chauvenet's criterion (3)

Define it as an outlier when:

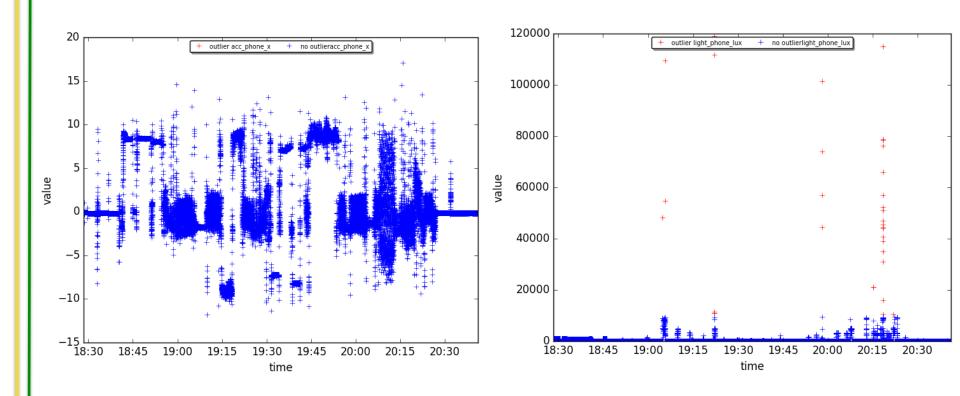
$$(1 - P(X \le x_i^j)) < \frac{1}{c \cdot N}$$

$$P(X \le x_i^j) < \frac{1}{c \cdot N}$$

Typical value for c is 2

Chauvenet's criterion (4)

CrowdSignals example (c=2):



Distribution-based outlier detection (2)

- Assuming the data of an attribute to follow a single distribution might be a bit too simple
- We can also use mixture models
- Assume the data can be described with K normal distributions

$$p(x) = \sum_{k=1}^K \pi_k \mathfrak{N}(x|oldsymbol{\mu}_k, oldsymbol{\sigma}_k)$$
 with $\sum_{k=1}^K \pi_k = 1$ $orall k: 0 < \pi_k \le 1$

Mixture models (1)

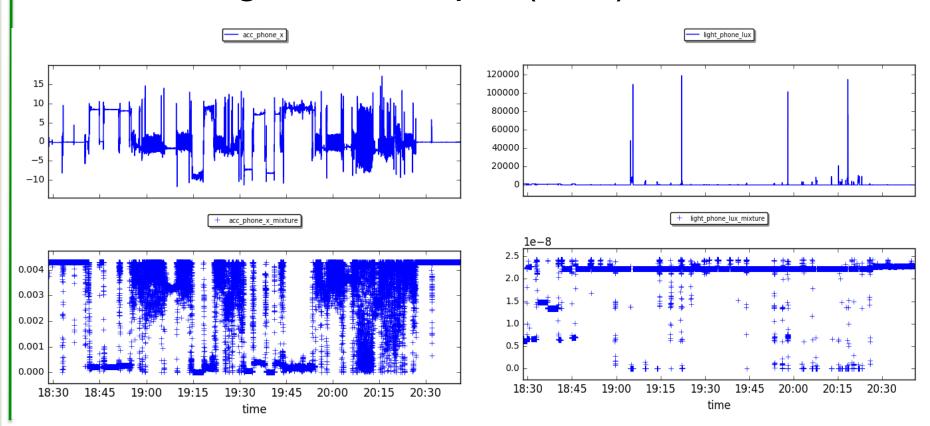
 We can find the best for the parameters by mean of maximizing the likelihood:

$$L = \prod_{n=1}^{N} p(x_n^j)$$

- We can for example use the expectation maximization algorithm
- How many distributions should we use?

Mixture models (2)

CrowdSignals example (K=3):



Distance-based outlier detection (1)

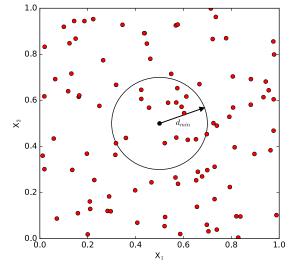
- Let us move away from distributions and just consider the distance between points
- We will consider the actual distance metrics later (Chapter 5), but e.g. think of Euclidean distance
- We will use $d(x_i^j, x_k^j)$ to represent the distance between two values of an attribute j

Simple distance-based approach (1)

• We call point close if they are within distance d_{min}

• Points are outliers when there are more than a fraction f_{min} far away (i.e. outside of

 d_{min})



Simple distance-based approach (2)

Formal:

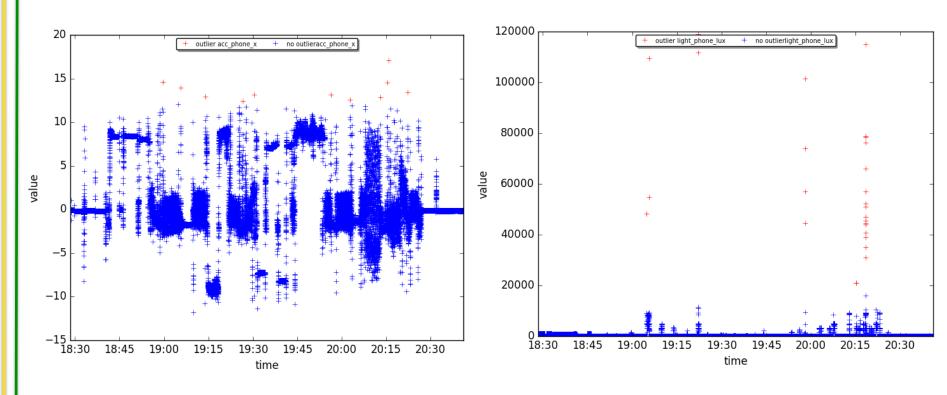
$$outlier(x_i^j) = \begin{cases} 1 & \frac{\sum_{n=1}^{N} d_over(x_i^j, x_n^j, d_{min})}{N} > f_{min} \\ 0 & otherwise \end{cases}$$

with

$$d_over(x, y, d_{min}) = \begin{cases} 1 & d(x, y) > d_{min} \\ 0 & otherwise \end{cases}$$

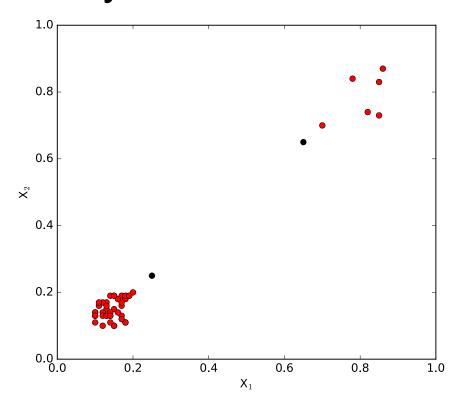
Simple distance-based approach (3)

• CrowdSignal example (d_{min} =0.1, f_{min} =0.99)



Distance-based outlier detection (2)

 The previous approach did not take the local density into account, imagine:



Local outlier factor (1)

- Local outlier factor does take this density into account
- We first define the distance k_{dist} for a point x_i as the largest distance to one of its k closest neighbors:

$$|\{x|x \in \{x_1^j, \dots, x_{i-1}^j, x_{i+1}^j, \dots, x_N^j\} \land d(x, x_i^j) \le k_{dist}(x_i^j)\}| \ge k$$

$$|\{x|x \in \{x_1^j, \dots, x_{i-1}^j, x_{i+1}^j, \dots, x_N^j\} \land d(x, x_i^j) < k_{dist}(x_i^j)\}| \le (k-1)$$

Local outlier factor (2)

• The set of neighbors of x_i^j within k_{dist} is called the k-distance neighborhood k_{dist} nh

$$k_{dist_nh}(x_i^j) = \{x | x \in \{x_1^j, \dots, x_{i-1}^j, x_{i+1}^j, \dots, x_N^j\} \land d(x, x_i^j) \le k_{dist}(x_i^j)\}$$

We define the reachability distance of x_i^j to x as (we remove small distances within k_{dist})

$$k_{reach_dist}(x_i^j, x) = max(k_{dist}(x), d(x, x_i^j))$$

Local outlier factor (3)

 Now we define the local reachability distance of our point x_i^j:

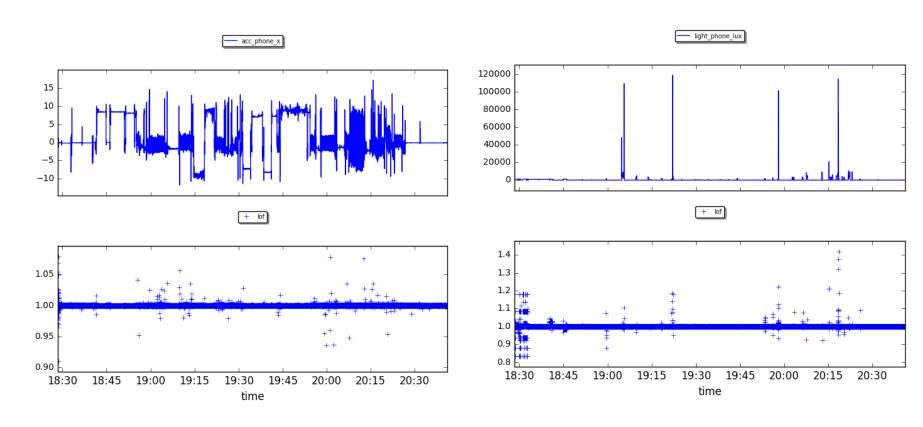
$$k_{lrd}(x_i^j) = 1 / \left(\frac{\sum_{x \in k_{dist_nh}(x_i^j)} k_{reach_dist}(x_i^j, x)}{|k_{dist_nh}(x_i^j)|} \right)$$

And we compare this to the neighbors:

$$k_{lof}(x_i^j) = \frac{\sum_{x \in k_{dist_nh}(x_i^j)} \frac{k_{lrd}(x)}{k_{lrd}(x_i^j)}}{|k_{dist_nh}(x_i^j)|}$$

Local outlier factor (4)

CrowdSignals case (k=5):



Outlier detection

- We remove all elements we have considered to be an outlier
- We replace them with the value missing

Missing values (1)

- We naturally move to missing values
- We can replace missing values by a substituted value (imputation)
- What should these values be?
 - mean (numeric)
 - mode (categorical and numeric)
 - median (numeric)

Missing values (2)

- We can also take more advanced approaches:
 - Use other attribute values in the same instance (Chapter 7):

$$x_i^1, \dots, x_i^{j-1}, x_i^{j+1}, \dots, x_i^p \to x_i^j$$

– Use values of the same attributes from other instances (need a ordered/temporal attribute):

$$x_1^j, \dots, x_{i-1}^j, x_{i+1}^j, \dots, x_N^j \to x_i^j$$

Missing values (3)

 Some examples of the second case in case of a single missing measurement:

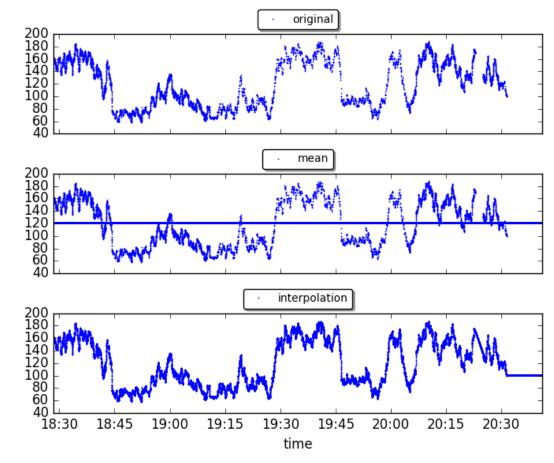
$$x_i^j = \frac{x_{i-1}^j + x_{i+1}^j}{2}$$

In case of multiple missing measurements:

$$x_i^j = x_{i-k}^j + k \cdot \frac{x_{i+l}^j - x_{i-k}^j}{(k+l)}$$

Missing values (4)

CrowdSignal example:



Outlier detection + imputation

- Approaches that combine outlier detection and value imputation exist as well
- The Kalman filter is a well known one:
 - it estimates expected values based on historical data
 - if the observed value deviates too much (i.e. an outlier) we can impute with the expected value

Kalman filter (1)

- Assume some latent state s_t which can have multiple components
 - Our quantified self data x_t performs measurements about this state
- For example:
 - s_t is Arnold's presence at a position and velocity
 - $-x_t$ is the GPS data and step counter

Kalman filter (2)

The next value of a state is defined as:

$$s_{t+1} = F_t s_t + B_t u_t + w_t$$

- u_t is a control input state (e.g. sending a message)
- $-w_t$ is white noise
- $-F_t$ and B_t are matrices
- The measurement associated with s_t is:

$$x_t = H_t s_t + v_t$$

 $-v_t$ is white noise

Kalman filter (3)

- For the noise we assume that: $v_t = \mathcal{N}(0, Q_t)$ $v_t = \mathcal{N}(0, R_t)$
- Now let us try to predict a next state (denoted by a hat):

$$\hat{s}_{t|t-1} = F_t \hat{s}_{t-1|t-1} + B_t u_t$$

 And let us also estimate our prediction error (matrix of variances and co-variances):

$$P_{t|t-1} = \mathbb{E}[(s_t - \hat{s}_{t|t-1})(s_t - \hat{s}_{t|t-1})^T]$$

Kalman filter (4)

 Based on our prediction of the state, let us look at the error:

$$e_t = x_t - H^T \hat{s}_{t|t-1}$$

Given this error we come with an updated prediction of our state

$$\hat{s}_{t|t} = \hat{s}_{t|t-1} + K_t e_t$$

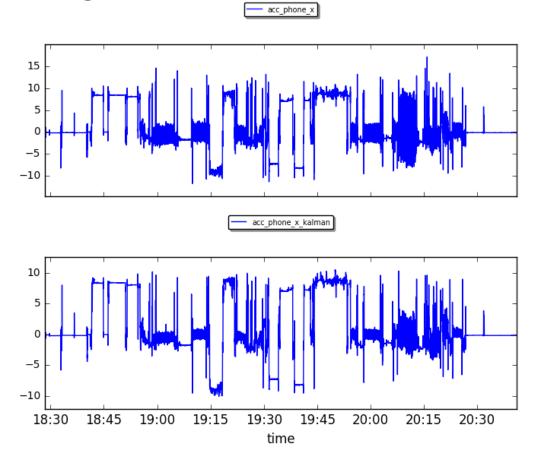
 K_t is a matrix derived based on an algorithm for which P_{t|t-1} is used

Kalman filter (5)

- Of course the matrices contain models (that we might not always know) but you can even do without (one measurement directly related to one latent state)
- Once we observe a large error, our x_t might be of and we can substitute it by the expected value
- Nice more extensive explanation: <u>http://www.bzarg.com/p/how-a-kalman-filter-works-in-pictures/</u>

Kalman filter (6)

CrowdSignal example:



Transforming the data (1)

- Even though we have removed the outliers and imputed missing values we could still suffer from noise in our dataset that could distract the learning process
- Approaches exist that filter our this more subtle noise
 - Lowpass filter
 - Principal Component Analysis

Lowpass filter (1)

- Main idea: some data has periodicity (e.g. walking, running)
- You can decompose a series of values into different periodic signals:
 - come with their own frequency
 - we will see about this in Chapter 4
- Some frequencies might be more interesting than others

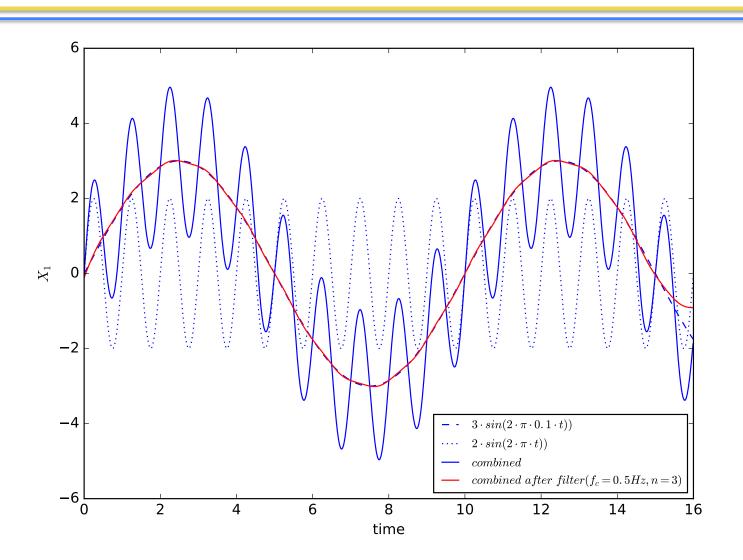
Lowpass filter (2)

- For example: we do not care about running (higher frequency), but we do care about walking
- We can filter out the higher frequency data
- The lowpass filter does exactly this:

$$|G(f)|^2 = \frac{1}{1 + (f/f_c)^{2n}}$$

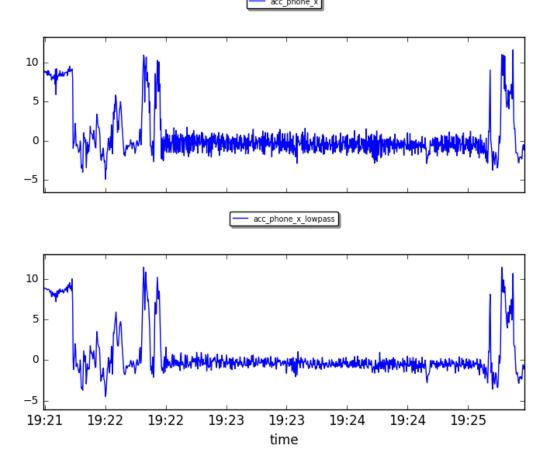
- -|G(f)| is the magnitude of the filter
- $-f_c$ is the cutoff frequency
- n is the order of the filter

Lowpass filter (3)



Lowpass filter (4)

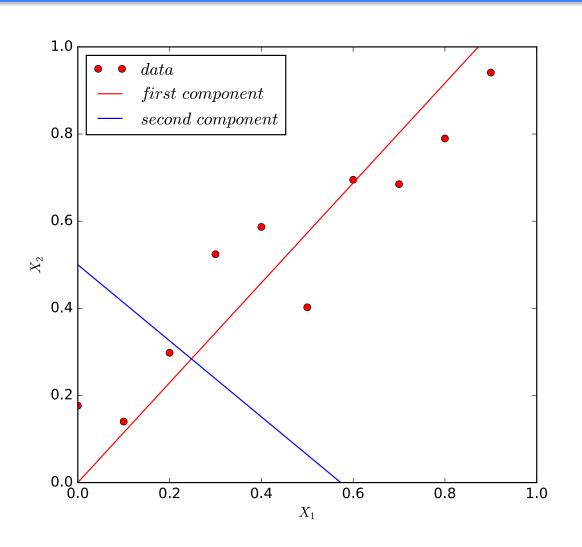
• CrowdSignal example (f_c =1.5Hz, n=20):



Transforming the data (2)

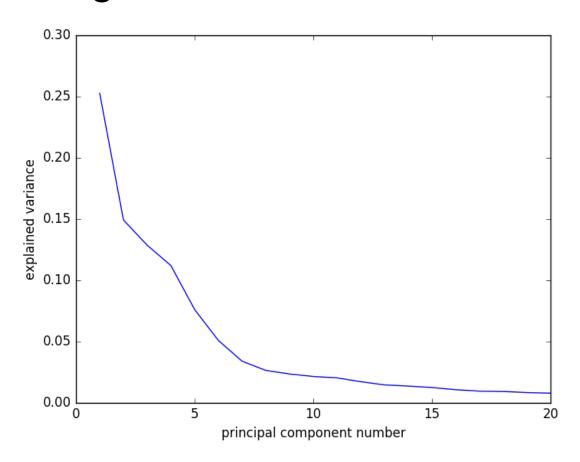
- We can also apply principal component analysis:
 - find new features that explain most of the variability in our data
 - select the number of components based on the explained variance
 - since most are familiar, I will not provide all details, see the book

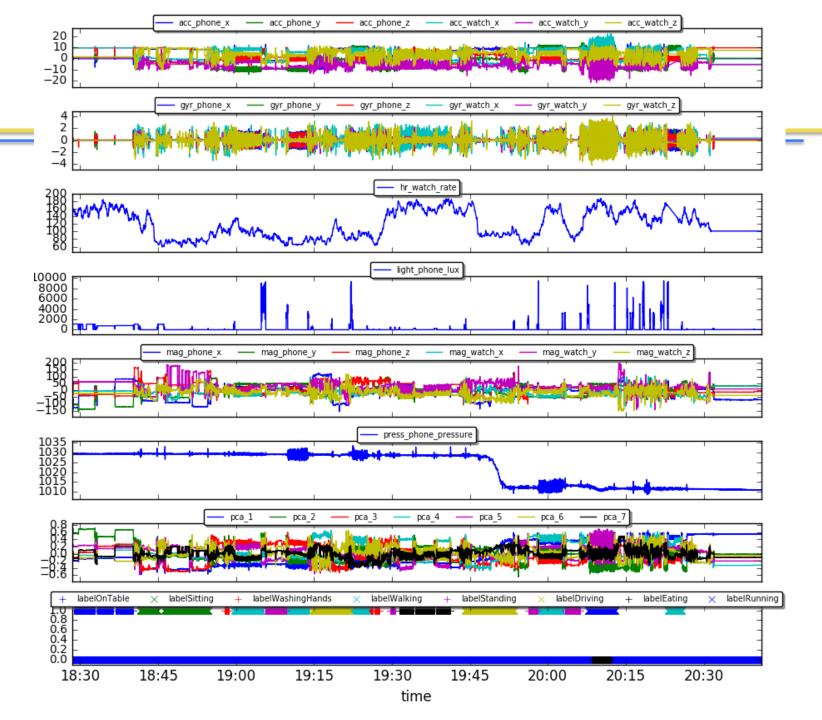
Principal component analysis (1)



Principal component analysis (2)

CrowdSignals:





Summary

Approach	Purpose	X ^T specific?	Number of attib- ributes consid- ered	Brief summary
Chauvenets criterion	Outlier detection	No	1	Identify values for an attribute that are unlikely given a single normal distribution to describe the data.
Mixture model-based outlier detection		No	1	Identify values for an attribute that are unlikely given a combinations of distributions to describe the data.
Simple distance-based outlier detection	Outlier detection	No	$1,\ldots,p$	Identify instances or attribute values at a great distance from other points.
Local outlier factor	Outlier detection	No	$1,\ldots,p$	Identify instances or attribute values who are more distant from other points than other close by points are to their closest points.
Mean imputation	Missing value imputation	No	1	Impute the mean value for an attribute for an unknown value or outlier.
Median imputation	Missing value imputation	No	1	Impute the median value for an attribute for an unknown value or outlier.
Mode imputation	Missing value imputation	No	1	Impute the mode value for an attribute for an unknown value or outlier.
Interpolation-based imputation	Missing value imputation		1	Impute the value for an attribute by extrapolating the previous and next measurement.
Model-based imputation	Missing value im- putation	No	1	Impute the value for an attribute by creating a model to predict it.
Kalman filter	Outlier detection & Missing value im- putation	Yes	$1,\ldots,p$	Create estimations of expected values based on historical observations and im- pute with estimated value when values are too deviant.
Lowpass Butterworth filter	Transformation	Yes	1	Remove periodic irrelevant data of a single attribute over time.
Principal Component Analysis	Transformation	No	p	Condense most of the variability of the data in a set of new features.

Summary

- Have learned how to handle all the noise in our data using various approaches
- This will help our machine learning algorithms later
- Next time: feature extraction